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Traditional urban cellular automata (CA) model can effectively simulate infilling and
edge-expansion growth patterns. However, most of these models are incapable of sim-
ulating the outlying growth. This paper proposed a novel model called LEI-CA which
incorporates landscape expansion index (LEI) with CA to simulate urban growth. Urban
growth type is identified by calculating the LEI index of each cell. Case-based rea-
soning technique is used to discover different transition rules for the adjacent growth
type and the outlying growth type, respectively. We applied the LEI-CA model to the
simulation of urban growth in Dongguan in southern China. The comparison between
logistic-based CA and LEI-CA indicates that the latter can yield a better performance.
The LEI-CA model can improve urban simulation accuracy over logistic-based CA
by 13.8%, 10.8% and 6.9% in 1993, 1999 and 2005, respectively. Moreover, the out-
lying growth type hardly exists in the simulation by logistic-based CA, while the
proposed LEI-CA model performs well in simulating different urban growth patterns.
Our experiments illustrate that the LEI-CA model not only overcomes the deficiencies
of traditional CA but might also better understand urban evolution process.

Keywords: urban simulation; outlying growth; landscape expansion index (LEI);
cellular automata

1. Introduction

Over the past 30 years, urban population increased from 1.5 billion in 1975 to 3.3 billion
(50% of the world’s population) in 2007. According to the United Nations’ prediction,
the growth trend will continue, as urban population is anticipated to exceed 60% (5.0 bil-
lion) by 2030, and the majority of this growth will occur in developing countries (United
Nations 2004). Massive immigration to cities has resulted in rapid expansion of urban
areas as well as land-use change. Accelerating urban growth has placed heavy pressure on
land resources and has brought about a series of environmental and social problems (Liu
et al. 2012). Planning and management in these fast-growing regions has become more
complex and difficult (Leao et al. 2004). Urban planners are faced with the challenge of
urban expansion and are required to seek new planning techniques to solve these problems.
Recently, computer-based land-use models have been used to address challenges in the fast
urbanization process (Herold et al. 2003). These models can provide an improved ability
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to assess future growth and to create planning scenarios and have the potential to become
important tools in supporting urban planning, policy making and assessing the environ-
mental or ecological effects of urbanization (Verburg et al. 1999, Berling-Wolff and Wu
2004, He et al. 2011).

A variety of computer-based approaches have been presented to model the spatial pro-
cess of urban growth, such as spatial logistic regression (Cheng and Masser 2004), cellular
automata (White and Engelen 1993, Clarke et al. 1997, Liu et al. 2008a), artificial neu-
ral networks (Pijanowskia et al. 2002), multi-agent systems (Benenson 1998) and land-use
spatial optimization models (Liu et al. 2012). Among these models, cellular automata (CA)
is probably the most popular urban simulation model because of its simplicity, its ability to
reproduce complex emergent dynamics and its affinities to raster geographic information
system GIS and remote-sensing data (Torrens and O’Sullivan 2001, Liu et al. 2010a). As a
type of bottom–up model, CA has been widely used for simulating various geographical
and ecological processes, including plant competition (Matsinos and Troumbis 2002), for-
est insect propagation (Bone et al. 2006), forest fire diffusion (Berjak and Hearne 2002),
epidemic propagation (Sirakoulis et al. 2000), landscape change (Wang and Zhang 2001),
urban growth (Batty and Xie 1994, Wu 2002) and land-use change (Clarke and Gaydos
1998, Li and Yeh 2002). These studies have shown that CA is able to effectively simulate
and predict complex geographical processes.

Among these applications of CA, urban simulation has been extensively explored
and has most case studies (Liu et al. 2008b). The core of urban CA is defining the
transition rules, which is used to calculate development probability as a function of the
neighbourhood, a series of contributing spatial factors, an inertia effect and a stochastic
disturbance term. Determining transition rules is challenging when CA is used to simulate
real-world cases, as it involves many spatial variables and parameters (Liu et al. 2008a).
Early method for defining transition rules is based on a visual test, which determines
the most optimal combination by visually comparing simulated patterns with actual ones
(Clarke et al. 1997). A general model of transition potential is calculated as a weighted
sum. Multiple criteria evaluation or logistic regression is used to determine the weights
(Wu and Webster 1998, Wu 2002). Another type of transition rules are based on fuzzy-set
approaches, which consider the uncertainty of human behaviour in the simulation (Liu and
Stuart 2003). Recently, artificial intelligence methods have been increasingly incorporated
in urban CA models, such as artificial neural networks (Li and Yeh 2002), case-based rea-
soning (CBR) (Li and Liu 2006), kernel-based learning machines (Liu et al. 2008b), ant
colony optimization (Liu et al. 2008a) and artificial immune systems (Liu et al., 2010a).
These learning algorithms aim to discover transition rules automatically based on empirical
data.

Most urban CA models deem that urban development takes place in peripheral areas,
which means that only regions adjacent to urban development zones can be converted into
urban land. These models may well have exaggerated the role of neighbourhood in urban
development. In fact, the spatial pattern of urban growth consists of three categories: infill-
ing, edge-expansion and outlying (Liu et al., 2010b). Infilling growth is characterized by a
non-developed pixel being converted to urban and surrounded by urban. Edge-expansion
refers to the newly developed urban area spreading out from the fringe of existing urban
patches. Outlying growth refers to the newly developed urban area occurring beyond exist-
ing developed areas. Traditional CA model considers neighbourhood as a very important
factor of urban growth, simulating the infilling and edge-expansion growth patterns quite
well but not having the same success with simulating growth in the outlying category.
New settlements emerge in areas with high urban development suitability (flat terrain and
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good transportation, among others) without respect to existing urban infrastructure. These
settlements tend to develop independently in the outlying growth pattern, which is quite
prevalent and significant in the early expansion of cities (Heimlich and Anderson 2001,
Wilson et al. 2003). Traditional CA model takes into consideration adjacent expansion
(infilling and edge-expansion) only; it assumes that the newly developed growth patch is
adjacent to the existing urban areas. The simulation results often suffer from the clus-
ter effect and deviate greatly from the actual urban layout (Liu et al., 2010a). Therefore,
the outlying growth pattern needs to be incorporated into the CA model to simulate
real urban expansion. Attempts have been made to take outlying expansion into account
in the CA model by using the SLEUTH urban growth model, which randomly selects
potential newly grown cells to generate outlying expansion (Clarke and Gaydos 1998).
However, random selection may not be able to catch actual areas occurred during outlying
expansion.

Uniform rules cannot describe different urban expansion types due to varying driving
factors. Thus, it is necessary to discover the rules of the adjacent growth (including infilling
and edge-expansion) and the outlying growth patterns in the CA model. Urban expansion
patterns must be classified prior to urban simulation. Liu et al. (2010b) conducted a quan-
titative analysis of the urban expansion process by using landscape expansion index (LEI),
which allows one to quantify the dynamic changes of landscape at two or more time points.
This index can examine the way in which urban landscape evolves and reveals the relation-
ships between the spatial distribution of urban landscape as well as its evolution process.
The proposed LEI divides urban landscape expansion into three categories: infilling, edge-
expansion and outlying. To compensate for the CA model’s inability to simulate outlying
growth, this article proposes a novel model, called LEI-CA, which integrates LEI and CA
for simulating different urban expansion patterns. The LEI index is used to classify urban
growth types with multi-temporal remote-sensing data. Then, transition rules of different
urban growth types are discovered subsequently by using CBR technique, which expresses
the principles of urban evolution implicitly according to discrete case analysis rather than
equation rules (Li and Liu 2006). Lastly, discriminated transition rules for different urban
growth types are used to simulate urban growth. The LEI-CA model was then applied to the
simulation of urban growth in Dongguan. Simulated results demonstrate that the proposed
model has the ability to simulate outlying growth, and it also can achieve better simulation
accuracy than logistic-based CA.

This article is organized as follows. Section 2 reviews the LEI index and defines
the urban growth pattern. Section 3 describes the proposed LEI-CA model in detail.
In Section 4, we present the experimental results and discussion. Then, some important
conclusions are drawn from the LEI-CA model validation experiment in the end.

2. Landscape expansion index (LEI) and urban growth pattern

Landscape expansion index (LEI) was proposed by Liu et al. (2010b). It can be used to
identify the expansion types of a certain landscape and its distribution patterns from multi-
temporal remote-sensing data. In contrast with traditional landscape indices which only
reflect the spatial characteristics at a given time, LEI can capture the information on forma-
tion processes of a landscape pattern (Liu et al. 2010b). The LEI index divides the spatial
pattern of urban growth into three types, i.e., infilling, edge-expansion and outlying, while
other patterns can be regarded as variants or hybrids of these three basic forms.

The LEI index is defined by using the buffer analysis, which can be used in queries to
determine which entities occur either within or outside the defined buffer zone. Figure 1
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Figure 1. Three types of landscape expansion.

illustrates the buffer zone of new patches with respect to three typical urban growth
patterns. A set of rules are defined to identify these growth patterns: (1) if a newly grown
patch belongs to the infilling growth, the buffer zone is mostly occupied by the old patch
(Figure 1(a)); (2) the area in buffer zone is mixed by vacant land and the original landscape
if the newly grown patch is the edge-expansion type (Figure 1(b)) and (3) if the newly
grown patch is classified as outlying growth, its buffer zone is composed exclusively of
vacant land (Figure 1(c)).

Therefore, the LEI index can be calculated by examining the characteristics of its buffer
zone, as shown in Equation (1):

LEI = 100
Ao

Ao + Av
(1)

where LEI is the landscape expansion index for a newly grown patch, Ao is the intersection
between the buffer zone and the old patches and Av is the intersection between the buffer
zone and the vacant category. According to this definition, the value of LEI varies from
0 to 100. Urban growth pattern is identified as infilling when LEI > 50, edge-expansion
when LEI ranges from 0 to 50 and outlying growth when LEI = 0.

3. Integrating LEI with CA for urban simulation based on CBR

Most of the existing CA models assume that transition rules are static in the spatio-temporal
dimension. It is unreasonable to apply the same set of rules to any location and time. CBR is
the process of solving new problems by retrieving stored records of prior problem-solving
cases. The use of CBR techniques can avoid knowledge-soliciting problems in CA sim-
ulation (Li and Liu 2006). Discrete cases can be obtained by multi-temporal historical
data to represent spatio-temporal variations of transition rules for CA model. New tem-
poral data can be regarded as new cases and can be added dynamically into case library
with time. By this way, case library would be updated dynamically, representing the self-
adaptive and self-learning capabilities of the case-based CA model. With increased cases
in case library, the system would accumulate more and more experience and knowledge.
This paper attempts to integrate LEI with geographical CA based on CBR, which is used
to discover transition rules of different types of cell. Figure 2 shows the methodology of
using CBR and LEI analysis for establishing CA model, which can simulate outlying urban
growth. First, the LEI value of each newly grown patch is calculated for classifying urban
growth type. Then, case libraries of the outlying growth and the adjacent growth (includ-
ing infilling and edge-expansion) are established through stratified sampling. Next, for
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Figure 2. The procedure of LEI-CA model.

each cell, we assume that this cell will be converted into urban. Then, buffer zone of cell
is created to calculated LEI value according to Equation (1). Growth type of each cell is
classified as outlying growth or adjacent growth based on LEI value. Lastly, according to
different types of case libraries, case matching is carried out to retrieve the experience
for urban simulation by using k-NN algorithm. Detailed procedures of LEI-CA model are
provided in the following sections.

3.1. Establishing different types of case libraries based on LEI

The first step in the LEI-CA model is to identify the pattern of the newly grown patch by
using LEI, which divides urban landscape expansion into three categories: infilling, edge-
expansion and outlying. Neighbourhood influence is a very important factor for urban
growth in infilling and edge-expansion patterns, which can be merged into the adjacent
growth. On the contrary, the outlying growth means that new settlements emerge in areas
irrespective of the existing urban infrastructure. It is therefore necessary to discover tran-
sition rules of adjacent growth and outlying growth . The CBR technique is then used to
establish the CA model. Cases are the basic units for the reasoning process. The first step in
CBR is to construct the case library which will replace explicit transition rules or equations.
In the proposed LEI-CA model, each case is represented as a vector which consists of three
parts: attributes (features) of each cell, case type (adjacent or outlying) and state conver-
sion (solution). Attributes include proximity (distance) variables and land-use types. The
proximity variables may involve distance to road, distance to town centre, distance to city
centre, and distance to railway. Several land-use types are considered in the simulations,
including water, forest and protected farm lands, which are incapable of being converted
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into urban land. Orchard, grass, shrubland and farm lands can be converted into urban land.
The second part is the type of each case which is identified by the calculated LEI.The state
conversion part is the solution, which determines if the state will be converted into an urban
area or not. A case can then be represented formally as follows:

I = (a1(i), a2(i), · · · , aN (i); C; S) (2)

where a1(i), a2(i), · · · , aN (i)are the attributes of case i, C is represented as the type of case
and S is set as a Boolean variable to represent the state of the case; if the case is urbanized,
S = 1, otherwise, S = 0. N is the total number of the attributes. Stratified random sampling
method is used to retrieve only a portion of original data for establishing the case libraries,
which can be divided into outlying and adjacent cases.

3.2. Case matching based on the k-NN algorithm

Case matching is the process of finding queried cases that are close to the current one from
the case library. The matching is usually based on the similarity between a queried case (i)
and an existing case (j) of the samples in the case library. The similarity can be measured
by the distance between the two vectors in the attribute space. In this study, the similarity
is calculated as follows:

Sim(i, j) = 1/(1+
√√√√ n∑

l=1

(al(i)− al(j))2) (3)

where al(i) is the lth feature of a case.
Then, the forecasting result is generated by using the k-NN algorithm, which is a

method for classifying objects based on closest training examples in the feature space. The
k-NN algorithm is a basic approach to CBR, which calculates the similarity between each
queried case and the training cases in the case library to determine its nearest neighbour
list. Intuitively, the k-NN algorithm assigns to each new queried case the majority class
(state) among its k-nearest neighbours (Li and Liu 2006). A closer neighbour indicates that
the neighbour is more similar to the new queried case and should therefore carry a high
weight in making the decision. The outcome of the queried case is estimated by using the
following expression:

f̂ (i)←− arg max
k∑

j=1

wj · δ(C, S, f (j))

{
δ(C, S, f (j)) = 1, if S = f (j)
δ(C, S, f (j)) = 0, if S �= f (j)

(4)

where k is the total number of the nearest neighbours, C is the type of case library and S is
the finite set of target class value. In this study, it represents the state of a cell (e.g., 1 for
urbanized and 0 for non-urbanized); wj is proportional to the inversed distance function:

wj = 1/

√√√√ n∑
l=1

(al(i)− al(j))2 (5)
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3.3. Estimating development probability by using CBR

The state conversion of a cell can be determined according to its k-nearest neighbour
by using CBR. However, this can only yield a Boolean value – converted or not. The
conversion probability is usually used to produce more plausible simulation results.The
conversion probability of a case can thus be estimated by using the following equation (Li
and Liu 2006):

PC
proximity(i) =

k∑
j=1

wjδ(C, 1, f (j))

k∑
j=1

wjδ(C, 1, f (j))+
k∑

j=1
wjδ(C, 0, f (j))

(6)

The rules of the adjacent growth and the outlying growth are discovered in the LEI-CA
model. If the queried case is outlying growth, the effect of neighbourhood is ignored.
Then the development probability is estimated by the combination ofPproximity(i), some
constraints and a random factor:

P(i) = APO
proximity(i)RAcon(i) (7)

where PO
proximity(i) is the conversion probability of outlying growth, con(i) is constraint fac-

tor, which is used to adjust the conversion probability. For example, it is unlikely that urban
development takes place in locations with rivers, steep slopes or protected farm lands. A is
an adjusting factor and RA is an error item, as shown below

RA = (1+ (− ln γ )α) (8)

where γ is a uniform random variable within the range of 0–1 and α is the parameter to
control the size of the stochastic perturbation.

If the queried case belongs to adjacent growth, the number of urbanized cells in
the neighbourhood can significantly influence urban development. Thus, the development
probability can be estimated by using the following equation:

P(i) = B · PA
proximity(i) · RA · con(i) ·�(i) (9)

where PA
proximity(i) is the conversion probability of adjacent growth, B is an adjusting factor

and �(i) is the percentage of urbanized cells in the neighbourhood. In general, Moore
neighbourhood (eight cells) is adopted in urban CA:

�(i) =
∑

3 × 3
N(urban(i))

3× 3− 1
(10)

where
∑
3×3

N(urban(i)) refers to the total number of urbanized cells in a 3× 3

neighbourhood window around the cell under concern. Then, the final development
probability can be estimated by combining Equations (7) and (9):

P(i) =
{

A · PO
proximity(i) · RA · con(i) if the queried case is outlying growth

B · PA
proximity(i) · RA · con(i) ·�(i) else

(11)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g 
L

ib
ra

ri
es

] 
at

 0
0:

59
 0

1 
M

ar
ch

 2
01

4 



International Journal of Geographical Information Science 155

4. Model implementation and results

The proposed LEI-CA model was applied to the simulation of urban expansion in
Dongguan, a fast-growing city in the east of Pearl River Delta in China (Figure 3).
Dongguan has an area of about 2465 km2 and is located at the corridor between Guangzhou
and Shenzhen. Rapid urban expansion occurred in this area due to fast economic develop-
ment in the past 30 years. In the initial period of development, the outlying expansion was
the dominant growth type (Liu et al. 2010b). Thus, the LEI-CA model is appropriate for
simulating the urban expansion in this area.

The actual urban areas in the years 1988, 1993, 1999 and 2005 were obtained by the
classification of the Thematic Mapper (TM) satellite images. The LEI value of each newly
grown patch is calculated to classify urban growth type for three periods, i.e., 1998–1993,

Figure 3. Location of the study area (Dongguan).
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1993–1999 and 1999–2005. A series of spatial variables that are related to urban con-
version were prepared using GIS function. The spatial variables include distance to city
proper, distance to town centres and proximity to roads. It should be noted that the prox-
imity to roads, used in the simulation, was dynamic for the modelling period. The dynamic
changes of data on roads (1988–1999) with vector format were obtained from the digiti-
zation of the transportation maps and remote-sensing images (Figure 4). Then, stratified
sampling method was employed to retrieve only a portion of the original data as a case
library which consists of three major groups of cases: outlying growth, adjacent growth and
non-urbanized. A total of 3000 cases, including 1000 outlying growth cases and 2000 adja-
cent growth cases, were obtained to represent the complex relationships between urban
development and spatial variables. Previous studies indicated that the spatial expansion
patterns of the study area have changed significantly in different periods (Liu et al. 2010b).
In this study, the case library was updated to reflect the possible change in relationships by
using additional satellite images of the 1999 and 2005 urban areas.

The proposed LEI-CA model was implemented using Visual C#.NET and ArcEngine
of ArcGIS. ArcEngine is used for accessing spatial data as well as a tool for distance
calculation and focal operations. Visual C#.NET is used to implement the CBR algorithm
and to calculate the LEI value.

The CBR algorithm was then used to obtain transition probabilities, which were applied
to the simulation of urban development in Dongguan, with the land-use of 1988 as the ini-
tial state. The buffer distance used to calculate LEI value is set to be 30 m. The simulation
was conducted in discrete temporal steps. Land use in 1993, 1999 and 2005 was simu-
lated by running LEI-CA model with 100, 200 and 300 iterations, respectively. The growth

Figure 4. The change of transportation network in Dongguan for 1988–1999.
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Figure 5. Simulated and actual urban development of Dongguan from 1988–2005.

types of urban patches were then classified by calculating LEI. Figure 5 shows the simu-
lated spatial distribution of different urban growth types during the period of 1988–2005.
The results demonstrate that the LEI-CA model can simulate outlying expansion for this
fast-growing region.

Urban CA needs to be validated when it is applied to the simulation of real cities
(Li and Liu 2006). The simplest validation method is to visually compare the simulated
patterns with the actual ones. Therefore, visual inspections were conducted to compare
the simulated urban areas for years 1993, 1999 and 2005 and the actual situations derived
from the TM data. It was found that the simulated outlying growth and actual ones are
similar (Figure 5). A confusion matrix of the concordance between the simulated and the
actual development was further obtained to conduct a quantitative analysis. This matrix
was calculated based on a cell-on-cell spatial overlay of these two patterns. Table 1 shows
the comparison of these two patterns, which reveals that the total accuracies are 93.8%,
91.3% and 86.8%, while simulation accuracy for the urban land-use category are 64.6%,
76.7% and 81.3% in 1993, 1999 and 2005, respectively.

Another experiment was carried out to compare the performances of the LEI-CA
model with those of traditional CA: logistic-based CA, which was proposed by Wu (2002)
to simulate urban development in Guangzhou. In this article, logistic-based CA was
applied to simulate urban dynamic development in Dongguan for comparison with LEI-
CA (Figure 5). As illustrated in Figure 5, logistic-based CA has the ability to simulate
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Table 1. Simulation accuracies of the LEI-CA model for Dongguan.

1988–1993 (cells)

Simulated 1993 non-urban Simulated 1993 urban Accuracy

Actual 1993 non-urban 218,183 7688 96.5%
Actual 1993 urban 7678 14,018 64.6%
Total accuracy 93.8%

1993–1999 (cells)

Simulated 1999 non-urban Simulated 1999 urban Accuracy

Actual 1999 non-urban 190,530 10,776 94.6%
Actual 1999 urban 10,765 35,499 76.7%
Total accuracy 91.3%

1999–2005 (cells)

Simulated 2005 non-urban Simulated 2005 urban Accuracy

Actual 2005 non-urban 143,392 16,401 89.7%
Actual 2005 urban 16,395 71,388 81.3%
Total accuracy 86.8%

adjacent urban growth, but it does not perform well in simulating outlying growth. Table 2
shows the simulation accuracies of the logistic-based CA. The total accuracies are 91.5%,
87.4% and 82.2%, while simulation accuracy for the urban land-use category are 50.7%,
65.9% and 74.4% in 1993, 1999 and 2005, respectively. Results indicate that logistic-based
CA has much lower accuracies than the LEI-CA model.

The buffer distance may have an effect on the simulated results for LEI-CA. It remains
a question whether the simulation accuracy would be significantly changed if a different
buffer distance is used. In order to provide a sensitivity analysis on buffer distance, five
different buffer distances are used in urban simulation. The buffer distance is varied from
30 to 150 m. The LEI values calculated with different buffer distances are used to classify
the growth type of cell. Then, simulation accuracies of LEI-CA under different buffer
distances are obtained for implementing sensitivity analysis. As shown in Figure 6, the
increase in buffer distance results in a slight decrease in simulation accuracies.

Further in-depth analysis involves comparing the actual urban growth patterns with the
simulated ones in different periods. The detailed information about urban growth types was
obtained by using LEI. Figure 7 shows the contribution of three urban patches in different
periods. As illustrated in Figure 7(a), from 1988 to 1993, urban growth was dominated
by the outlying and the edge-expansion types, whereas the infilling growth type occupied
only 5.4%. In the periods of 1993–1999 and 1999–2005, the outlying type dramatically
decreased. However, the proportion of the infilling type increased tremendously (5.42%–
17.78%–27.11%).Throughout all periods, edge-expansion was the dominant growth type.
Figure 7(b) illustrates the proportions of different growth types of the simulated patterns
based on the LEI-CA model. A comparison between Figure 7(a) and (b) shows that the
actual growth patterns were similar to the simulated ones using the LEI-CA model. The
outlying type and the infilling type changed significantly in opposite directions. The out-
lying type dramatically decreased, but the percentage of the infilling type exhibited a
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Table 2. Simulation accuracies of the logistic-based CA for Dongguan.

1988–1993 (cells)

Simulated 1993 non-urban Simulated 1993 urban Accuracy

Actual 1993 non-urban 215,413 10,451 95.4%
Actual 1993 urban 10,696 11,009 50.7%
Total accuracy 91.5%

1993–1999 (cells)

Simulated 1999 non-urban Simulated 1999 urban Accuracy

Actual 1999 non-urban 185,811 15,494 92.3%
Actual 1999 urban 15,775 30,488 65.9%
Total accuracy 87.4%

1999–2005 (cells)

Simulated 2005 non-urban Simulated 2005 urban Accuracy

Actual 2005 non-urban 138,064 21,697 86.4%
Actual 2005 urban 22,451 65,332 74.4%
Total accuracy 82.2%

Figure 6. The changes of simulated accuracies based on LEI-CA under different buffer distances.

Figure 7. Percentages of growth area for the three urban growth types.

tendency to increase rapidly. This means that the rapid urbanization process in Dongguan
from 1988 to 2005 has two distinct phases, namely, diffusion and coalescence. Before
1988, urban areas mainly occurred in the city centre. As the core area grows (1988–1993),
it disperses growth to new cores, causing a peak in the number of the outlying type growth
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patches (Figures 5(b) and 7 (b)). The process of urban development during this period was
called diffusion. Thereafter, urban development was seen in the periphery of existing urban
land. As the simulation proceeded, the gaps between neighbourhood patches were filled by
new settlements (Figure 7 (b)). Urban landscape evolved from an initial state, with the core
area, to a later state where urban pixels were more likely to coalesce. This process resulted
in urban growth (1993–2005) and is regarded as coalescence. Simulations by using LEI-
CA model demonstrate that the urban development process is consistent with the theory of
urban growth phases.

However, significant diversions exist between the actual growth patterns and the sim-
ulated results of logistic-based CA (Figure 7). The percentage of the outlying type was
very low through all periods (Figure 7(c)). This indicates that logistic-based CA might
not be able to simulate the outlying growth type. For the period 1993–1999, the LEI-CA
and logistic-based CA models both presented a higher percentage of area for the infilling
type than the actual patterns. Maybe it is because that both LEI-CA and logistic-based CA
exaggerate the role of neighbourhood in urban simulation. This leads to an increase in the
percentage of the infilling type and a decrease in the percentage of the edge-expansion type.
From 1999 to 2005, the proportion of the infilling type increased up to 65.4%, whereas the
proportion of the infilling type was only 27.11% in the actual patterns.

The histograms of LEI for three periods were produced to perform a quantitative com-
parison between the actual patterns, the simulated results of LEI-CA and the simulations
of logistic-based CA (Figure 8). The change trends of LEI in the actual patterns are similar
to the simulated results of LEI-CA. However, the LEI histograms of the simulation based
on logistic-based CA is different from the actual LEI histograms (Figure 8). LEI peaks

Figure 8. The histograms of LEI based on actual patterns, LEI-CA and logistic-CA.
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[0] remained fairly stable for all periods in the actual LEI histograms. This means that the
outlying type always exists at some level of abundance. On the other hand, the number of
patches for LEI value with [0] is very low in the simulated results of logistic-based CA.
Previous comparisons, including Figures 5, 7 and 8 and Tables 1 and 2, indicate that the
LEI-CA model performs better than logistic-based CA in terms of simulation accuracy and
structural conformity. In particular, the LEI-CA model is very suitable for simulating the
outlying growth type, which can overcome the limitation of traditional CA.

5. Conclusion

Since CA was firstly introduced to solve complex geographical problems by Tobler (1970),
CA models have become more popular and sophisticated and have been widely used for
simulating and predicting the spatial process of urban expansion (Li and Liu 2006; Liu
et al., 2010a). Many urban CA models are used to produce the best fit between the simu-
lated patterns and actual ones. A major problem with most of these CA models is that they
only focus on the role of neighbourhoods in urban development, which leads to traditional
CA model being unable to simulate the outlying growth type. This paper proposes a new
model (LEI-CA) to incorporate LEI into CA for simulating urban growth. The advantage of
LEI-CA is that the outlying urban growth type can be simulated by using this model, which
overcomes the deficiencies of traditional CA. Moreover, the LEI-CA model can interpret
spatio-temporal processes of urban landscapes.

The proposed LEI-CA model uses different rules to simulate the adjacent growth type
(including infilling and edge-expansion) and the outlying growth type. Urban growth type
is identified by calculating LEI, which can capture the information on the formation pro-
cesses of a landscape pattern. The CBR approach is used to discover different transition
rules for the adjacent growth and the outlying growth. The self-learning ability and adapt-
ability of CBR is potentially useful for addressing complexities in urban simulation (Li and
Liu 2006).

The LEI-CA model has been successfully applied to the simulation of urban growth
in Dongguan in southern China. TM satellite images in 1988, 1993, 1999 and 2005 were
used to provide the actual urban areas of Dongguan. The LEI index is calculated to iden-
tify the three urban growth types mentioned earlier. Then, we establish case libraries of the
outlying growth and the adjacent growth through stratified sampling. According to a differ-
ent case library, case matching is carried out to discover distinct transition rules for urban
simulation by using the k-NN algorithm. The urban growth of Dongguan in the period of
1988–2005 is simulated using the LEI-CA model. The comparison between the proposed
model and the logistic-based CA model indicates that the LEI-CA model performs bet-
ter. Our experimental results show that LEI-CA can improve urban simulation accuracy
over logistic-based CA by 13.8%, 10.8% and 6.9% in 1993, 1999 and 2005, respectively.
Validation of urban growth patterns also improved significantly. The change trends of LEI
in the actual patterns are similar to the simulated results of LEI-CA. However, the outlying
growth type hardly exists in the simulation by logistic-based CA. This comparison reveals
that traditional CA, which considers only the adjacent expansion, has a natural defect,
given its inability to simulate outlying growth. It also illustrates that the LEI-CA model
has great potential in simulating urban growth patterns, especially for the outlying growth
type. More importantly, the proposed LEI-CA model may be used to better understand
urban evolution process because it is consistent with the theory of urban growth phases.

The sensitivity analysis experiment indicates that the increase in buffer distance results
in a slight decrease in the simulated accuracies. The change size (e.g., size of individual
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urban development projects) may also have an effect on the simulated results. But, in this
article, LEI-CA is a raster-based model, which assumes that each change occurred inde-
pendently within 30 × 30 m pixel area. In future research, it is hoped that we can build
a LEI-CA model based on irregular vector objects. The vector-based CA model will be
convenient to analyse the effect of the change size on the simulated accuracies.
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